DATA MINING, SOCIAL STATISTICS AND COMPUTER DATA TECHNOLOGY
Module SYSTEMS FOR THE MANAGEMENT OF DATABASES

Academic Year 2025/2026 - Teacher: GIOVANNI GIUFFRIDA

Expected Learning Outcomes

The course introduces the essential concepts of data organization and storage, showing with practical examples how relational databases help manage information effectively in the social sciences.

The second part presents the basics of Big Data and Artificial Intelligence, with a focus on generative models and Large Language Models (LLMs). The general functioning of these technologies will be explained in accessible language, with simple use cases and a brief discussion of key social and ethical issues.

The aim is to provide a basic understanding of how these technologies work and their impact on society.

Course Structure

Classroom.

Required Prerequisites

No particular prerequisites are required. However, some basic knowledge of computer science might help.

Attendance of Lessons

Attendance is strongly recommended; discussions and material not in the lecture materials will be discussed in class.

Detailed Course Content

  • Basic concepts: data, information, and their abstraction
  • Main differences between information systems and IT systems
  • How relational databases organize and store data
  • Introduction to querying databases for information retrieval
  • Brief overview of what Database Management Systems (DBMS) are
  • Essential ideas of data mining and text mining, with simple examples
  • Basics of Big Data and Artificial Intelligence, focusing on real-world examples
  • Introduction to generative models and Large Language Models (LLMs), with straightforward explanations and social/ethical highlights

Textbook Information

Slides provided by the teacher.

Articles suggested by the teacher.

Atzeni,Ceri,Paraboschi,Torlone, Basi di Dati,Modelli e linguaggi di interrogazione, terza edizione, McGraw-Hill 2002.

Albano-Ghelli-Orsini, Basi di Dati Relazionali e a Oggetti, Zanichelli, 1997

Ullman, Basi di Dati e Basi di Conoscenza, 1991

Machine Learning: The Art and Science of Algorithms That Make Sense of Data, Peter Flach, Cambridge University Press, 2015

Big data. Una rivoluzione che trasformerà il nostro modo di vivere e già minaccia la nostra libertà. Viktor Mayer-Schönberger, Kenneth N. Cukier, 2013

Intelligenza Artificiale e fenomeni sociali, Sergio Bedessi, Maggioli Editore, 2019

Sebastian Raschka, Sviluppare Large Language Model, Apogeo, 2025

Course Planning

 SubjectsText References
1Dai dati all’informazione: Sistemi informativi e informatici; Dato e informazione; Organizzazione relazionale dei dati; Interrogazione; Sistemi di interrogazione evolutiAtzeni,Ceri,Paraboschi,Torlone, Basi di Dati,Modelli e linguaggi di interrogazione, terza edizione, McGraw-Hill 2002. • Albano-Ghelli-Orsini, Basi di Dati Relazionali e a Oggetti, Zanichelli, 1997Ullman, Basi di Dati e Basi di Conoscenza
2Introduzione alla Computational Social Science; Nozioni di «Big Data» e Aritificial Intelligence; Concetti e cenni di algoritmi di «profilazione utente»; Social Networks e Social Network Analysis;slides fornite dal docente; Machine Learning: The Art and Science of Algorithms That Make Sense of Data, Peter Flach, Cambridge University Press; Big data. Una rivoluzione che trasformerà il nostro modo di vivere e già minaccia la nostra libertà. Viktor M

Learning Assessment

Learning Assessment Procedures

Written exam with multiple-choice questions, designed to assess the knowledge and understanding of fundamental concepts. Inclusion of True/False questions, intended to verify the ability to apply acquired knowledge, to distinguish between correct and incorrect statements, and to foster critical self-assessment of learning.

Examples of frequently asked questions and / or exercises

SELECTION can never return an empty set. T/F?

The relational model was invented by J. Watson in 1980. T/F?

A properly terminated transaction could leave the DB in an inconsistent state. T/F?